Find a power series representation for $$\(f(x)=1 h+2\)$$ xand determine the radius of convergence $$\(r\)$$.
A.
\(-\sum_{n=1}^{\infty} \frac{2^{n}}{n} x^{n} ; r=\frac{1}{2}\)
B.
\(\frac{1}{2} \sum_{n=1}^{\infty} x^{n} ; r=1\)
C.
\(-\sum_{n=1}^{\infty} \frac{2^{n}}{n} x^{n+1} ; r=\frac{1}{2}\)
D.
\(-\sum_{n=0}^{\infty} 2^{n+1} x^{n} ; r=\frac{1}{2}\)
Exam No:AP Calculus Unit 10 Questions Set 2 Year:2024 Question No:28
Answer:
A
Knowledge points:
10.13 Radius and Interval of Convergence of Power Series
10.14 Finding Taylor or Maclaurin Series for a Function
Solution:
Download APP for more features
1. Tons of answers.
2. Smarter Al tools enhance your learning journey.
IOS
Download
Download
Android
Download
Download
Google Play
Download
Download