Find the Taylor series for $$\(f(x)=\frac{1}{\sqrt{x}}\)$$ centered at $$\(x=4\)$$.

A.
\(\sum_{n=0}^{\infty}(-1)^{n} \frac{1 \cdot 3 \cdot 5 \cdots(2 n-1)}{2^{3 n+1} n!}(x-4)^{n}\)
B.
\(\sum_{n=0}^{\infty}(-1)^{n} \frac{1 \cdot 3 \cdot 5 \cdots(2 n+1)}{4^{n+1}}(x-4)^{n}\)
C.
\(\sum_{n=0}^{\infty} \frac{1}{2^{2 n+1} n} x^{n}\)
D.
\(\sum_{n=1}^{\infty}(-1)^{n} \frac{2 \cdot 4 \cdot 6 \cdots 2 n}{2^{3 n+1} n!}(x-4)^{n}\)
Calculus
AP
College Board
Exam No:AP Calculus Unit 10 Questions Set 2 Year:2024 Question No:37

Answer:

A

Knowledge points:

10.13 Radius and Interval of Convergence of Power Series
10.14 Finding Taylor or Maclaurin Series for a Function

Solution:

Download APP for more features
1. Tons of answers.
2. Smarter Al tools enhance your learning journey.
IOS
Download
Android
Download
Google Play
Download