The Taylor polynomial of degree 3 at $$\(x=1\)$$ for $$\(e^{x}\)$$ is
A.
\(e\left\lceil 1+(x-1)+\frac{(x-1)^{2}}{2}+\frac{(x-1)^{3}}{3}\right]\)
B.
\(e\left[1+(x+1)+\frac{(x+1)^{2}}{2!}+\frac{(x+1)^{3}}{3!}\right]\)
C.
\(e\left[1+(x-1)+\frac{(x-1)^{2}}{2!}+\frac{(x-1)^{3}}{3!}\right]\)
D.
\(e\left[1-(x-1)+\frac{(x-1)^{2}}{2!}+\frac{(x-1)^{3}}{3!}\right]\)
Exam No:AP Calculus Unit 10 Questions Set Year:2024 Question No:29
Answer:
C
Knowledge points:
10.11 Finding Taylor Polynomial Approximations of Functions
10.14 Finding Taylor or Maclaurin Series for a Function
Solution:
Download APP for more features
1. Tons of answers.
2. Smarter Al tools enhance your learning journey.
IOS
Download
Download
Android
Download
Download
Google Play
Download
Download