The lines $$\(l_{1}\)$$ and $$\(l_{2}\)$$ have equations $$\(\mathbf{r}=\mathbf{i}+3 \mathbf{j}-2 \mathbf{k}+\lambda(2 \mathbf{i}+\mathbf{j}+\mathbf{k})\)$$ and $$\(\mathbf{r}=\mathbf{i}-2 \mathbf{j}+9 \mathbf{k}+\mu(\mathbf{i}-4 \mathbf{j}+2 \mathbf{k})\)$$ respectively. The plane $$\(\Pi_{1}\)$$ contains $$\(l_{1}\)$$ and is parallel to $$\(l_{2}\)$$. Find the acute angle between $$\(\Pi_{1}\)$$ and $$\(\Pi_{2}\)$$. ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . The point $$\(P\)$$ on $$\(l_{1}\)$$ and the point $$\(Q\)$$ on $$\(l_{2}\)$$ are such that $$\(P Q\)$$ is perpendicular to both $$\(l_{1}\)$$ and $$\(l_{2}\)$$.
Exam No:9231_w24_qp_11 Year:2024 Question No:7(b)
Answer:
Knowledge points:
1.6.3.1 determining whether a line lies in a plane, is parallel to a plane or intersects a plane, and finding the point of intersection of a line and a plane when it exists
1.6.3.2 finding the foot of the perpendicular from a point to a plane
1.6.3.3 finding the angle between a line and a plane, and the angle between two planes
1.6.3.4 finding an equation for the line of intersection of two planes
1.6.3.5 calculating the shortest distance between two skew lines
1.6.3.6 finding an equation for the common perpendicular to two skew lines
Solution:
Download APP for more features
1. Tons of answers.
2. Smarter Al tools enhance your learning journey.
IOS
Download
Download
Android
Download
Download
Google Play
Download
Download
