The points $$\(A\)$$ and $$\(B\)$$ are at the same horizontal level a distance $$\(4 a\)$$ apart. The ends of a light elastic string, of natural length $$\(4 a\)$$ and modulus of elasticity $$\(\lambda\)$$, are attached to $$\(A\)$$ and $$\(B\)$$. A particle $$\(P\)$$ of mass $$\(m\)$$ is attached to the midpoint of the string. The system is in equilibrium with $$\(P\)$$ at a distance $$\(\frac{3}{2} a\)$$ below $$\(M\)$$, the midpoint of $$\(A B\)$$. Find $$\(\lambda\)$$ in terms of $$\(m\)$$ and $$\(g\)$$. ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . The particle $$\(P\)$$ is pulled down vertically and released from rest at a distance $$\(\frac{8}{3} a\)$$ below $$\(M\)$$.

Further Mathematics
IGCSE&ALevel
CAIE
Exam No:9231_s24_qp_31 Year:2024 Question No:2(a)

Answer:



Knowledge points:

3.4.1 use Hooke’s law as a model relating the force in an elastic string or spring to the extension or compression, and understand the term modulus of elasticity
3.4.2.1 Proof of the formula is not required.

Solution:

Download APP for more features
1. Tons of answers.
2. Smarter Al tools enhance your learning journey.
IOS
Download
Android
Download
Google Play
Download