A circle with centre $$\(C\)$$ has equation $$\((x-8)^{2}+(y-4)^{2}=100\)$$. Show that the point $$\(T(-6,6)\)$$ is outside the circle. ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................
Exam No:9709_w20_qp_13 Year:2020 Question No:11(a)
Answer:
\((-6-8)^{2}+(6-4)^{2}\)
\(=200\)
\(\sqrt{200}>10\), hence outside circle
Alternative method for question 11(a)
Radius \(=10\) and \(C=(8,4)\)
\(\operatorname{Min}(x)\) on circle \(=8-10=-2\)
Hence outside circle
\(=200\)
\(\sqrt{200}>10\), hence outside circle
Alternative method for question 11(a)
Radius \(=10\) and \(C=(8,4)\)
\(\operatorname{Min}(x)\) on circle \(=8-10=-2\)
Hence outside circle
Knowledge points:
1.3.2 interpret and use any of the forms in solving problems (Including calculations of distances, gradients, midpoints, points of intersection and use of the relationship between the gradients of parallel and perpendicular lines.)
1.3.3 understand that the equation represents the circle with centre and radius (Including use of the expanded form.)
Solution:
Download APP for more features
1. Tons of answers.
2. Smarter Al tools enhance your learning journey.
IOS
Download
Download
Android
Download
Download
Google Play
Download
Download