A circle with centre $$\(C\)$$ has equation $$\((x-8)^{2}+(y-4)^{2}=100\)$$. Find the $$\(x\)$$-coordinates of $$\(A\)$$ and $$\(B\)$$. ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................
Exam No:9709_w20_qp_13 Year:2020 Question No:11(d)
Answer:
$(x-8)^{2}+(7 x-2-4)^{2}=100$ or equivalent in terms of $y$
$50 x^{2}-100 x(=0)$
$x=0$ and 2
Alternative method for question 11(d)
$
\begin{array}{l}
\mathbf{M C}=\left(\begin{array}{c}
7 \\
-1
\end{array}\right) \\
\left(\begin{array}{l}
1 \\
5
\end{array}\right)+\left(\begin{array}{l}
-1 \\
-7
\end{array}\right)=\left(\begin{array}{c}
0 \\
-2
\end{array}\right),\left(\begin{array}{l}
1 \\
5
\end{array}\right)+\left(\begin{array}{l}
1 \\
7
\end{array}\right)=\left(\begin{array}{c}
2 \\
12
\end{array}\right)
\end{array}
$
$x=0$ and 2
$50 x^{2}-100 x(=0)$
$x=0$ and 2
Alternative method for question 11(d)
$
\begin{array}{l}
\mathbf{M C}=\left(\begin{array}{c}
7 \\
-1
\end{array}\right) \\
\left(\begin{array}{l}
1 \\
5
\end{array}\right)+\left(\begin{array}{l}
-1 \\
-7
\end{array}\right)=\left(\begin{array}{c}
0 \\
-2
\end{array}\right),\left(\begin{array}{l}
1 \\
5
\end{array}\right)+\left(\begin{array}{l}
1 \\
7
\end{array}\right)=\left(\begin{array}{c}
2 \\
12
\end{array}\right)
\end{array}
$
$x=0$ and 2
Knowledge points:
1.1.3 solve quadratic equations, and quadratic inequalities, in one unknown (By factorising, completing the square and using the formula.)
1.1.4 solve by substitution a pair of simultaneous equations of which one is linear and one is quadratic
Solution:
Download APP for more features
1. Tons of answers.
2. Smarter Al tools enhance your learning journey.
IOS
Download
Download
Android
Download
Download
Google Play
Download
Download