A curve has equation $$\(y=x^{2}-2 x-3\)$$. A point is moving along the curve in such a way that at $$\(P\)$$ the $$\(y\)$$-coordinate is increasing at 4 units per second and the $$\(x\)$$-coordinate is increasing at 6 units per second. Find the $$\(x\)$$-coordinate of $$\(P\)$$. ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................
Exam No:9709_m20_qp_12 Year:2020 Question No:4
Answer:
\[
\frac{d y}{d x}=2 x-2
\]
\(\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4}{6}\)
their \((2 x-2)=\) their \(\frac{4}{6}\)
\[
x=\frac{4}{3} \text { oe }
\]
\frac{d y}{d x}=2 x-2
\]
\(\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{4}{6}\)
their \((2 x-2)=\) their \(\frac{4}{6}\)
\[
x=\frac{4}{3} \text { oe }
\]
Knowledge points:
1.7.3 apply differentiation to gradients, tangents and normals, increasing and decreasing functions and rates of change (Including connected rates of change, e.g. given the rate of increase of the radius of a circle, find the rate of increase of the area for a specific value of one of the variables.)
Solution:
Download APP for more features
1. Tons of answers.
2. Smarter Al tools enhance your learning journey.
IOS
Download
Download
Android
Download
Download
Google Play
Download
Download