A curve has equation $$\(y=\mathrm{f}(x)\)$$ where $$\(\mathrm{f}(x)=x^{4}-5 x^{3}+6 x^{2}+5 x-15\)$$. As shown in the diagram, the curve crosses the $$\(x\)$$-axis at the points $$\(A\)$$ and $$\(B\)$$ with coordinates $$\((a, 0)\)$$ and $$\((b, 0)\)$$ respectively. Use the factor theorem to show that $$\((x-3)\)$$ is a factor of $$\(\mathrm{f}(x)\)$$. ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................
Exam No:9709_w20_qp_22 Year:2020 Question No:7(a)
Answer:
Substitute \(x=3\) and attempt evaluation
Obtain 0 and confirm factor \(x-3\)
Obtain 0 and confirm factor \(x-3\)
Knowledge points:
2.1.3 use the factor theorem and the remainder theorem.
Solution:
Download APP for more features
1. Tons of answers.
2. Smarter Al tools enhance your learning journey.
IOS
Download
Download
Android
Download
Download
Google Play
Download
Download