A curve has equation $$\(y=3 \cos 2 x+2\)$$ for $$\(0 \leqslant x \leqslant \pi\)$$. Functions $$\(\mathrm{f}, \mathrm{g}\)$$ and $$\(\mathrm{h}\)$$ are defined for $$\(x \in \mathbb{R}\)$$ by $$\[ \begin{aligned} & \mathrm{f}(x)=3 \cos 2 x+2, \\ & \mathrm{~g}(x)=\mathrm{f}(2 x)+4, \\ & \mathrm{~h}(x)=2 \mathrm{f}\left(x+\frac{1}{2} \pi\right) . \end{aligned} \]$$ Describe fully a sequence of transformations that maps the graph of $$\(y=\mathrm{f}(x)\)$$ on to $$\(y=\mathrm{h}(x)\)$$. .................................................................................................................................................... .................................................................................................................................................... .................................................................................................................................................... .................................................................................................................................................... .................................................................................................................................................... .................................................................................................................................................... .................................................................................................................................................... .................................................................................................................................................... .................................................................................................................................................... ....................................................................................................................................................
Exam No:9709_w20_qp_12 Year:2020 Question No:11(e)
Answer:
Translation of \(\left(\begin{array}{c}-\frac{\pi}{2} \\ 0\end{array}\right)\)
Stretch by (scale factor) 2 parallel to \(y\)-axis (or vertically).
Stretch by (scale factor) 2 parallel to \(y\)-axis (or vertically).
Knowledge points:
1.2.5 understand and use the transformations of the graph of and simple combinations of these. (Including use of the terms ‘translation’, ‘reflection’ and ‘stretch’ in describing transformations. Questions may involve algebraic or trigonometric functions, or other graphs with given features.)
Solution:
Download APP for more features
1. Tons of answers.
2. Smarter Al tools enhance your learning journey.
IOS
Download
Download
Android
Download
Download
Google Play
Download
Download