An arithmetic progression has first term 5 and common difference $$\(d\)$$, where $$\(d> 0\)$$. The second, fifth and eleventh terms of the arithmetic progression, in that order, are the first three terms of a geometric progression. The sum of the first 77 terms of the arithmetic progression is denoted by $$\(S_{77}\)$$. The sum of the first 10 terms of the geometric progression is denoted by $$\(G_{10}\)$$. $$\[ \text { Find the value of } S_{77}-G_{10} \text {. } \]$$ ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . 11 The function f is defined by $$\(\mathrm{f}(x)=3+6 x-2 x^{2}\)$$ for $$\(x \in \mathbb{R}\)$$. (a) Express $$\(\mathrm{f}(x)\)$$ in the form $$\(a-b(x-c)^{2}\)$$, where $$\(a, b\)$$ and $$\(c\)$$ are constants, and state the range of $$\(f\)$$. ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ .

Mathematics
IGCSE&ALevel
CAIE
Exam No:9709_w24_qp_11 Year:2024 Question No:10(b)

Answer:



Knowledge points:

1.6.3 use the formulae for the nth term and for the sum of the first n terms to solve problems involving arithmetic or geometric progressions (Including knowledge that numbers a,b,c are 'in arithmetic progression' if 2 b=a+c (or equivalent) and are 'in geometric progression' if (or equivalent) (Questions may involve more than one progression.)

Solution:

Download APP for more features
1. Tons of answers.
2. Smarter Al tools enhance your learning journey.
IOS
Download
Android
Download
Google Play
Download