Find the exact coordinates of the stationary point on the curve with equation $$\(y=5 x \mathrm{e}^{\frac{1}{2} x}\)$$. ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................
Exam No:9709_s20_qp_22 Year:2020 Question No:2
Answer:
Differentiate using product rule to obtain \(a \mathrm{e}^{\frac{1}{2} x}+b x \mathrm{e}^{\frac{1}{2} x}\)
Obtain correct \(5 \mathrm{e}^{\frac{1}{2} x}+\frac{5}{2} x \mathrm{e}^{\frac{1}{2} x} \mathrm{OE}\)
Equate first derivative to zero and solve for \(x\)
Obtain \(x\)-coordinate \(-2\)
Obtain \(y\)-coordinate \(-10 \mathrm{e}^{-1}\)
Obtain correct \(5 \mathrm{e}^{\frac{1}{2} x}+\frac{5}{2} x \mathrm{e}^{\frac{1}{2} x} \mathrm{OE}\)
Equate first derivative to zero and solve for \(x\)
Obtain \(x\)-coordinate \(-2\)
Obtain \(y\)-coordinate \(-10 \mathrm{e}^{-1}\)
Knowledge points:
2.4.1 use the derivatives of ,ln x,sin x,cos x,tan x, together with constant multiples, sums, differences and composites
2.4.2 differentiate products and quotients
Solution:
Download APP for more features
1. Tons of answers.
2. Smarter Al tools enhance your learning journey.
IOS
Download
Download
Android
Download
Download
Google Play
Download
Download