Hence expand $$\(\left[1+\left(x+x^{2}\right)\right]^{5}\)$$ in ascending powers of $$\(x\)$$ up to and including the term in $$\(x^{3}\)$$, simplifying your answer. .................................................................................................................................................... .................................................................................................................................................... .................................................................................................................................................... .................................................................................................................................................... .................................................................................................................................................... .................................................................................................................................................... .................................................................................................................................................... .................................................................................................................................................... .................................................................................................................................................... .................................................................................................................................................... .................................................................................................................................................... .................................................................................................................................................... .................................................................................................................................................... ....................................................................................................................................................
Exam No:9709_s20_qp_13 Year:2020 Question No:4(b)
Answer:
\(1+5\left(x+x^{2}\right)+10\left(x+x^{2}\right)^{2}+10\left(x+x^{2}\right)^{3}+\ldots\) SOI
\(1+5\left(x+x^{2}\right)+10\left(x^{2}+2 x^{3}+\ldots\right)+10\left(x^{3}+\ldots\right)+\ldots \quad\) SOI
\(1+5 x+15 x^{2}+30 x^{3}+\ldots\)
\(1+5\left(x+x^{2}\right)+10\left(x^{2}+2 x^{3}+\ldots\right)+10\left(x^{3}+\ldots\right)+\ldots \quad\) SOI
\(1+5 x+15 x^{2}+30 x^{3}+\ldots\)
Knowledge points:
1.6.1 use the expansion of , where is a positive integer (Including the notations and n!) (Knowledge of the greatest term and properties of the coefficients are not required.)
Solution:
Download APP for more features
1. Tons of answers.
2. Smarter Al tools enhance your learning journey.
IOS
Download
Download
Android
Download
Download
Google Play
Download
Download