Hence find the value of $$\(y\)$$ such that $$\(\left|2^{1-y}-5\right|=\left|2^{-y}+6\right|\)$$. Give your answer correct to 3 significant figures. ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................
Exam No:9709_w20_qp_23 Year:2020 Question No:4(b)
Answer:
Apply logarithms and use power law for \(2^{-y}=k\) where \(k>0\) from (a)
Obtain \(-3.46\)
Obtain \(-3.46\)
Knowledge points:
2.2.3 use logarithms to solve equations and inequalities in which the unknown appears in indices
Solution:
Download APP for more features
1. Tons of answers.
2. Smarter Al tools enhance your learning journey.
IOS
Download
Download
Android
Download
Download
Google Play
Download
Download