It is given that $$\(\int_{0}^{a}\left(\frac{4}{2 x+1}+8 x\right) \mathrm{d} x=10\)$$, where $$\(a\)$$ is a positive constant. Using the equation in part (a), show by calculation that 1 < a < 2. ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................
Exam No:9709_s20_qp_23 Year:2020 Question No:7(b)
Answer:
Consider sign of \(a-\sqrt{2.5-0.5 \ln (2 a+1)}\) or equivalent for 1 and 2
Obtain \(-0.3 \ldots\) and \(0.6 \ldots\) or equivalents and justify conclusion
Obtain \(-0.3 \ldots\) and \(0.6 \ldots\) or equivalents and justify conclusion
Knowledge points:
2.6.1 locate approximately a root of an equation, by means of graphical considerations and/or searching for a sign change
Solution:
Download APP for more features
1. Tons of answers.
2. Smarter Al tools enhance your learning journey.
IOS
Download
Download
Android
Download
Download
Google Play
Download
Download