The booklets produced by a certain publisher contain, on average, 1 incorrect letter per 30000 letters, and these errors occur randomly. A randomly chosen booklet from this publisher contains 12500 letters. Use a suitable approximating distribution to find the probability that this booklet contains at least 2 errors. ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................ ................................................................................................................................................................
Exam No:9709_m20_qp_62 Year:2020 Question No:1
Answer:
\((\lambda=) \frac{5}{12}=0.417\) or better
\(1-e^{-\frac{5}{12}}\left(1+\frac{5}{12}\right)\)
\(=0.0661\) or \(0.0662(3 \mathrm{sf})\)
\(1-e^{-\frac{5}{12}}\left(1+\frac{5}{12}\right)\)
\(=0.0661\) or \(0.0662(3 \mathrm{sf})\)
Knowledge points:
6.1.4 use the Poisson distribution as an approximation to the binomial distribution where appropriate (The conditions that n is large and p is small should be known; n > 50 and np < 5, approximately.)
Solution:
Download APP for more features
1. Tons of answers.
2. Smarter Al tools enhance your learning journey.
IOS
Download
Download
Android
Download
Download
Google Play
Download
Download