The diagram shows a velocity-time graph which models the motion of a car. The graph consists of four straight line segments. The car accelerates at a constant rate of $$\(2 \mathrm{~m} \mathrm{~s}^{-2}\)$$ from rest to a speed of $$\(20 \mathrm{~m} \mathrm{~s}^{-1}\)$$ over a period of $$\(T\)$$ s. It then decelerates at a constant rate for 5 seconds before travelling at a constant speed of $$\(V \mathrm{~m} \mathrm{~s}^{-1}\)$$ for $$\(27.5 \mathrm{~s}\)$$. The car then decelerates to rest at a constant rate over a period of $$\(5 \mathrm{~s}\)$$. Given that the distance travelled up to the point at which the car begins to move with constant speed is one third of the total distance travelled, find $$\(V\)$$. ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................

Mathematics
IGCSE&ALevel
CAIE
Exam No:9709_w20_qp_42 Year:2020 Question No:4(b)

Answer:

Distance travelled before constant speed $=$
$
\begin{array}{l}
1 / 2 \times 10 \times 20+1 / 2 \times(20+V) \times 5 \\
1 / 2 \times 10 \times 20+1 / 2 \times(20-V) \times 5+5 V \\
{[=150+2.5 \mathrm{~V}]}
\end{array}
$
Distance travelled after constant speed
$
\begin{array}{l}
=27.5 \mathrm{~V}+1 / 2 \times 5 \mathrm{~V}[=30 \mathrm{~V}] \\
1 / 2 \times 10 \times 20+1 / 2 \times(20+V) \times 5 \\
=1 / 3[1 / 2 \times 10 \times 20+1 / 2 \times(20+V) \times 5+27.5 \mathrm{~V}+1 / 2 \times 5 \mathrm{~V}] \\
\hline V=12
\end{array}
$

Knowledge points:

4.2.2.1 the area under a velocity–time graph represents displacement

Solution:

Download APP for more features
1. Tons of answers.
2. Smarter Al tools enhance your learning journey.
IOS
Download
Android
Download
Google Play
Download