The diagram shows a curve with equation $$\(y=4 x^{\frac{1}{2}}-2 x\)$$ for $$\(x \geqslant 0\)$$, and a straight line with equation $$\(y=3-x\)$$. The curve crosses the $$\(x\)$$-axis at $$\(A(4,0)\)$$ and crosses the straight line at $$\(B\)$$ and $$\(C\)$$. Show that $$\(B\)$$ is a stationary point on the curve. .................................................................................................................................................... .................................................................................................................................................... .................................................................................................................................................... .................................................................................................................................................... .................................................................................................................................................... ....................................................................................................................................................

Mathematics
IGCSE&ALevel
CAIE
Exam No:9709_w20_qp_11 Year:2020 Question No:12(b)

Answer:

\(\frac{\mathrm{d} y}{\mathrm{~d} x}=2 x^{1 / 2}-2\)
\(\frac{\mathrm{d} y}{\mathrm{~d} x}\) or \(2 x^{1 / 2}-2=0\) when \(x=1\) hence \(B\) is a stationary point

Knowledge points:

1.7.4 locate stationary points and determine their nature, and use information about stationary points in sketching graphs. (Including use of the second derivative for identifying maxima and minima; alternatives may be used in questions where no method is specified.) (Knowledge of points of inflexion is not included.)

Solution:

Download APP for more features
1. Tons of answers.
2. Smarter Al tools enhance your learning journey.
IOS
Download
Android
Download
Google Play
Download