The diagram shows part of the curve with equation $$\(y=x^{3} \cos 2 x\)$$. The curve has a maximum at the point $$\(M\)$$. Use the equation in part (a) to show by calculation that the $$\(x\)$$-coordinate of $$\(M\)$$ lies between $$\(0.59\)$$and $$\(0.60\)$$. ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................

Mathematics
IGCSE&ALevel
CAIE
Exam No:9709_s20_qp_21 Year:2020 Question No:5(b)

Answer:

Consider sign of \(x-\sqrt[3]{1.5 x^{2} \cot 2 x}\) or equivalent for \(0.59\) and \(0.60\)
Obtain \(-0.009 \ldots\) and \(0.005 \ldots\) or equivalents and justify conclusion

Knowledge points:

2.6.1 locate approximately a root of an equation, by means of graphical considerations and/or searching for a sign change

Solution:

Download APP for more features
1. Tons of answers.
2. Smarter Al tools enhance your learning journey.
IOS
Download
Android
Download
Google Play
Download