The diagram shows part of the curve with equation $$\(y=-2 x^{2}+8 x+11\)$$ and the line with equation $$\(y=8 x+9\)$$. Find the area of the shaded region. ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ .

Mathematics
IGCSE&ALevel
CAIE
Exam No:9709_w24_qp_12 Year:2024 Question No:7(b)

Answer:







Knowledge points:

1.3.5 understand the relationship between a graph and its associated algebraic equation, and use the relationship between points of intersection of graphs and solutions of equations. (e.g. to determine the set of values of for which the line intersects, touches or does not meet a quadratic curve.)
1.8.4.1 the area of a region bounded by a curve and lines parallel to the axes, or between a curve and a line or between two curves
1.8.4.2 a volume of revolution about one of the axes. (A volume of revolution may involve a region not bounded by the axis of rotation, e.g. the region between and y = 5 rotated about the x-axis.)

Solution:

Download APP for more features
1. Tons of answers.
2. Smarter Al tools enhance your learning journey.
IOS
Download
Android
Download
Google Play
Download