The diagram shows the graph of $$\(y=\mathrm{f}(x)\)$$, where $$\(\mathrm{f}(x)=\frac{3}{2} \cos 2 x+\frac{1}{2}\)$$ for $$\(0 \leqslant x \leqslant \pi\)$$. State the equation of the curve which is the reflection of $$\(y=\mathrm{f}(x)\)$$ in the $$\(x\)$$-axis. Give your answer in the form $$\(y=a \cos 2 x+b\)$$, where $$\(a\)$$ and $$\(b\)$$ are constants. ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................
Exam No:9709_s20_qp_11 Year:2020 Question No:4(c)
Answer:
\(y=-\frac{3}{2} \cos 2 x-\frac{1}{2}\)
Knowledge points:
1.2.5 understand and use the transformations of the graph of and simple combinations of these. (Including use of the terms ‘translation’, ‘reflection’ and ‘stretch’ in describing transformations. Questions may involve algebraic or trigonometric functions, or other graphs with given features.)
Solution:
Download APP for more features
1. Tons of answers.
2. Smarter Al tools enhance your learning journey.
IOS
Download
Download
Android
Download
Download
Google Play
Download
Download