The diagram shows the probability density function, $$\(\mathrm{f}(x)\)$$, of a random variable $$\(X\)$$. For $$\(0 \leqslant x \leqslant a\)$$,  $$\(\mathrm{f}(x)=k ;\)$$ elsewhere $$\(\mathrm{f}(x)=0\)$$. Given that $$\(\operatorname{Var}(X)=3\)$$, find $$\(a\)$$. ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................

Mathematics
IGCSE&ALevel
CAIE
Exam No:9709_w20_qp_63 Year:2020 Question No:4(b)

Answer:

\((\) Mean \(=)\) their \(k \times \frac{a^{2}}{2}\left(=\frac{a}{2}\right)\)
\(\frac{1}{a} \int_{0}^{a} x^{2} \mathrm{~d} x\left(=\frac{a^{2}}{3}\right)\)
\(-\left(\frac{a^{\prime}}{2}\right)^{2}\left(=\frac{a^{2}}{12}\right)\)
\(\left(\frac{a^{2}}{12}=3\right) a=6\)

Knowledge points:

6.3.2 use a probability density function to solve problems involving probabilities, and to calculate the mean and variance of a distribution. (Including location of the median or other percentiles of a distribution by direct consideration of an area using the density function.) (Explicit knowledge of the cumulative distribution function is not included.)

Solution:

Download APP for more features
1. Tons of answers.
2. Smarter Al tools enhance your learning journey.
IOS
Download
Android
Download
Google Play
Download