The equation of a curve is $$\(y=2 x+1+\frac{1}{2 x+1}\)$$ for $$\(x>-\frac{1}{2}\)$$. Find $$\(\frac{\mathrm{d} y}{\mathrm{~d} x}\)$$ and $$\(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}\)$$. ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................
Exam No:9709_w20_qp_13 Year:2020 Question No:8(a)
Answer:
\(\frac{\mathrm{d} y}{\mathrm{~d} x}=[2] \quad\left[-2(2 x+1)^{-2}\right]\)
\(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=8(2 x+1)^{-3}\)
\(\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=8(2 x+1)^{-3}\)
Knowledge points:
1.7.1 understand the gradient of a curve at a point as the limit of the gradients of a suitable sequence of chords, and use the notations for first and second derivatives (Only an informal understanding of the idea of a limit is expected.)
1.7.2 use the derivative of (for any rational ), together with constant multiples, sums and differences of functions, and of composite functions using the chain rule
Solution:
Download APP for more features
1. Tons of answers.
2. Smarter Al tools enhance your learning journey.
IOS
Download
Download
Android
Download
Download
Google Play
Download
Download