The equation of a curve is $$\(2 \mathrm{e}^{2 x} y-y^{3}+4=0\)$$. Show that the curve has no stationary points. ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................

Mathematics
IGCSE&ALevel
CAIE
Exam No:9709_w20_qp_22 Year:2020 Question No:5(c)

Answer:

Equate numerator of derivative to zero and state that at least one of \(\mathrm{e}^{2 x}\) and \(y\) cannot be zero
Complete argument

Knowledge points:

1.7.3 apply differentiation to gradients, tangents and normals, increasing and decreasing functions and rates of change (Including connected rates of change, e.g. given the rate of increase of the radius of a circle, find the rate of increase of the area for a specific value of one of the variables.)

Solution:

Download APP for more features
1. Tons of answers.
2. Smarter Al tools enhance your learning journey.
IOS
Download
Android
Download
Google Play
Download