The equation of a curve is $$\(y=k x^{\frac{1}{2}}-4 x^{2}+2\)$$, where $$\(k\)$$ is a constant. Points $$\(A\)$$ and $$\(B\)$$ on the curve have $$\(x\)$$-coordinates 0.25 and 1 respectively. For a different value of $$\(k\)$$, the tangents to the curve at the points $$\(A\)$$ and $$\(B\)$$ meet at a point with $$\(x\)$$-coordinate 0.6 . Find this value of $$\(k\)$$. ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ .

Mathematics
IGCSE&ALevel
CAIE
Exam No:9709_w24_qp_13 Year:2024 Question No:11(c)

Answer:



Knowledge points:

1.7.4 locate stationary points and determine their nature, and use information about stationary points in sketching graphs. (Including use of the second derivative for identifying maxima and minima; alternatives may be used in questions where no method is specified.) (Knowledge of points of inflexion is not included.)

Solution:

Download APP for more features
1. Tons of answers.
2. Smarter Al tools enhance your learning journey.
IOS
Download
Android
Download
Google Play
Download