The equation of a curve is $$\(y=2 x^{2}-3\)$$. Two points $$\(A\)$$ and $$\(B\)$$ with $$\(x\)$$-coordinates 2 and $$\((2+h)\)$$ respectively lie on the curve. Find and simplify an expression for the gradient of the chord $$\(A B\)$$ in terms of $$\(h\)$$. ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ .

Mathematics
IGCSE&ALevel
CAIE
Exam No:9709_w24_qp_12 Year:2024 Question No:3(a)

Answer:



Knowledge points:

1.7.1 understand the gradient of a curve at a point as the limit of the gradients of a suitable sequence of chords, and use the notations for first and second derivatives (Only an informal understanding of the idea of a limit is expected.)

Solution:

Download APP for more features
1. Tons of answers.
2. Smarter Al tools enhance your learning journey.
IOS
Download
Android
Download
Google Play
Download