The equation of a circle is $$\(x^{2}+y^{2}+p x+2 y+q=0\)$$, where $$\(p\)$$ and $$\(q\)$$ are constants. Find the equation of the normal to the circle at the point $$\(A\)$$. ................................................................................................................................................ . ................................................................................................................................................ . ................................................................................................................................................ . ................................................................................................................................................ . ................................................................................................................................................ . ................................................................................................................................................ . ................................................................................................................................................ . ................................................................................................................................................ . ................................................................................................................................................ . ................................................................................................................................................ . ................................................................................................................................................ . ................................................................................................................................................ . ................................................................................................................................................ . DO NOT WRITE IN THIS MARGIN ................................................................................................................................................ . ................................................................................................................................................ . ................................................................................................................................................ . (ii) Find the values of $$\(p\)$$ and $$\(q\)$$. ................................................................................................................................................ . ................................................................................................................................................ . ................................................................................................................................................ . ................................................................................................................................................ . ................................................................................................................................................ . ................................................................................................................................................ . ................................................................................................................................................ . ................................................................................................................................................ . ................................................................................................................................................ . ................................................................................................................................................ . ................................................................................................................................................ . ................................................................................................................................................ . ................................................................................................................................................ . ................................................................................................................................................ . ................................................................................................................................................ . ................................................................................................................................................ . ................................................................................................................................................ . ................................................................................................................................................ . ................................................................................................................................................ . ................................................................................................................................................ . ................................................................................................................................................ . ................................................................................................................................................ . ................................................................................................................................................ . ................................................................................................................................................ . ................................................................................................................................................ . ................................................................................................................................................ . ................................................................................................................................................ .
Exam No:9709_w24_qp_12 Year:2024 Question No:8(b)
Answer:




Knowledge points:
1.3.2 interpret and use any of the forms in solving problems (Including calculations of distances, gradients, midpoints, points of intersection and use of the relationship between the gradients of parallel and perpendicular lines.)
1.3.3 understand that the equation represents the circle with centre and radius (Including use of the expanded form.)
1.3.4 use algebraic methods to solve problems involving lines and circles (Including use of elementary geometrical properties of circles, e.g. tangent perpendicular to radius, angle in a semicircle, symmetry.) (Implicit differentiation is not included.)
Solution:
Download APP for more features
1. Tons of answers.
2. Smarter Al tools enhance your learning journey.
IOS
Download
Download
Android
Download
Download
Google Play
Download
Download