The equation of a curve is $$\(y=\frac{1}{2} k^{2} x^{2}-2 k x+2\)$$ and the equation of a line is $$\(y=k x+p\)$$, where $$\(k\)$$ and $$\(p\)$$ are constants with $$\(0< k< 1\)$$. It is given that one of the points of intersection of the curve and the line has coordinates $$\(\left(\frac{5}{2}, \frac{1}{2}\right)\)$$. Find the values of $$\(k\)$$ and $$\(p\)$$, and find the coordinates of the other point of intersection. ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . DO NOT WRITE IN THIS MARGIN ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ .
Exam No:9709_w24_qp_12 Year:2024 Question No:9(a)
Answer:


Knowledge points:
1.1.4 solve by substitution a pair of simultaneous equations of which one is linear and one is quadratic
1.3.5 understand the relationship between a graph and its associated algebraic equation, and use the relationship between points of intersection of graphs and solutions of equations. (e.g. to determine the set of values of for which the line intersects, touches or does not meet a quadratic curve.)
Solution:
Download APP for more features
1. Tons of answers.
2. Smarter Al tools enhance your learning journey.
IOS
Download
Download
Android
Download
Download
Google Play
Download
Download