The equation of a curve is $$\(y=4+5 x+6 x^{2}-3 x^{3}\)$$. It is given that $$\(y=9 x+k\)$$ is a tangent to the curve. Find the value of the constant $$\(k\)$$. ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ .

Mathematics
IGCSE&ALevel
CAIE
Exam No:9709_w24_qp_11 Year:2024 Question No:9(b)

Answer:



Knowledge points:

1.7.4 locate stationary points and determine their nature, and use information about stationary points in sketching graphs. (Including use of the second derivative for identifying maxima and minima; alternatives may be used in questions where no method is specified.) (Knowledge of points of inflexion is not included.)

Solution:

Download APP for more features
1. Tons of answers.
2. Smarter Al tools enhance your learning journey.
IOS
Download
Android
Download
Google Play
Download