The function $$\(\mathrm{f}\)$$ is defined by $$\(\mathrm{f}(x)=\frac{2 x}{3 x-1}\)$$ for $$\(x>\frac{1}{3}\)$$. Show that $$\(\frac{2}{3}+\frac{2}{3(3 x-1)}\)$$ can be expressed as $$\(\frac{2 x}{3 x-1}\)$$. ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................
Exam No:9709_w20_qp_13 Year:2020 Question No:6(b)
Answer:
\(\left[\frac{2(3 x-1)+2}{3(3 x-1)}\right]=\left[\frac{6 x}{3(3 x-1)}=\frac{2 x}{3 x-1}\right]\)
Knowledge points:
1.2.1 understand the terms function, domain, range, one-one function, inverse function and composition of functions
Solution:
Download APP for more features
1. Tons of answers.
2. Smarter Al tools enhance your learning journey.
IOS
Download
Download
Android
Download
Download
Google Play
Download
Download