The functions $$\(\mathrm{f}\)$$ and $$\(\mathrm{g}\)$$ are defined by $$\[ \begin{aligned} & \mathrm{f}(x)=x^{2}-4 x+3 \text { for } x> c, \text { where } c \text { is a constant, } \\ & \mathrm{g}(x)=\frac{1}{x+1} \text { for } x> -1 \end{aligned} \]$$ It is given that $$\(\mathrm{f}\)$$ is a one-one function. State the smallest possible value of $$\(c\)$$. .................................................................................................................................................... .................................................................................................................................................... .................................................................................................................................................... .................................................................................................................................................... .................................................................................................................................................... .................................................................................................................................................... .................................................................................................................................................... ....................................................................................................................................................

Mathematics
IGCSE&ALevel
CAIE
Exam No:9709_s20_qp_13 Year:2020 Question No:9(b)

Answer:

Smallest \(c=2\)
(FT on their part (a))

Knowledge points:

1.2.1 understand the terms function, domain, range, one-one function, inverse function and composition of functions

Solution:

Download APP for more features
1. Tons of answers.
2. Smarter Al tools enhance your learning journey.
IOS
Download
Android
Download
Google Play
Download