The lengths of female snakes of a particular species are normally distributed with mean $$\(54 \mathrm{~cm}\)$$ and standard deviation $$\(6.1 \mathrm{~cm}\)$$. Find the probability that a randomly chosen female snake of this species has length between $$\(50 \mathrm{~cm}\)$$ and $$\(60 \mathrm{~cm}\)$$. ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................

Mathematics
IGCSE&ALevel
CAIE
Exam No:9709_s20_qp_51 Year:2020 Question No:6(a)

Answer:

$\mathrm{P}\left(\frac{50-54}{6.1}<z<\frac{60-54}{6.1}\right)=\mathrm{P}(-0.6557<Z<0.9836)$
Both values correct
$
\begin{array}{l}
\Phi(0.9836)-\Phi(-0.6557)=\Phi(0.9836)+\Phi(0.6557)-1 \\
=0.8375+0.7441-1 \\
\text { (Correct area })
\end{array}
$
0.582

Knowledge points:

5.5.1 understand the use of a normal distribution to model a continuous random variable, and use normal distribution tables (Sketches of normal curves to illustrate distributions or probabilities may be required.)
5.5.2.1 finding the value of $P\left(X>x_{1}\right)$, or a related probability, given the values of $x_{1}, \mu, \sigma$.

Solution:

Download APP for more features
1. Tons of answers.
2. Smarter Al tools enhance your learning journey.
IOS
Download
Android
Download
Google Play
Download