The polynomial $$\(\mathrm{p}(x)\)$$ is defined by $$\( \mathrm{p}(x)=6 x^{3}+a x^{2}-4 x-3 \)$$ where $$\(a\)$$ is a constant. It is given that $$\((x+3)\)$$ is a factor of $$\(\mathrm{p}(x)\)$$. Hence solve the equation $$\(\mathrm{p}(\operatorname{cosec} \theta)=0\)$$ for $$\(0^{\circ}<\theta<360^{\circ}\)$$. ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................
Exam No:9709_s20_qp_22 Year:2020 Question No:6(c)
Answer:
Attempt solution of \(\sin \theta=k\) where \(-1 \leqslant k \leqslant 1\)
Obtain \(199.5\)
Obtain \(340.5\)
Obtain \(199.5\)
Obtain \(340.5\)
Knowledge points:
2.3.2.1 more contents
2.3.2.2 the expansions of
2.3.2.3 the formulae for sin 2A,cos 2A and tan 2A
2.3.2.4 the expression of
Solution:
Download APP for more features
1. Tons of answers.
2. Smarter Al tools enhance your learning journey.
IOS
Download
Download
Android
Download
Download
Google Play
Download
Download