The time in hours that Davin plays on his games machine each day is normally distributed with mean $$\(3.5\)$$ and standard deviation $$\(0.9\)$$. Calculate an estimate for the number of days in a year (365 days) on which Davin plays on his games machine for between $$\(2.8\)$$ and $$\(4.2\)$$ hours. ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................

Mathematics
IGCSE&ALevel
CAIE
Exam No:9709_w20_qp_51 Year:2020 Question No:5(c)

Answer:

\(\mathrm{P}(2.8<\mathrm{X}<4.2)=1-2 \times\) their \(\mathbf{5}(\mathbf{a})\)
\(\equiv 2(1-\) their \(5(\mathbf{a}))-1\)
\(\equiv 2(0 \cdot 5-\) their \(5(\mathbf{a}))\)
\(=0 \cdot 5636\)
Number of days \(=365 \times 0.5636=205 \cdot 7\)
So, 205 (days)
Alternative method for question \(5(c)\)
\( \mathrm{P}\left(\frac{2.8-3.5}{0.9}\right. \)<z<\( \left.\frac{4.2-3.5}{0.9}\right) \)
\( \begin{array}{l} =\Phi(0.7778)-(1-\Phi 0.7778) \\ =0.7818-(1-0.7818) \\ =0.5636 \end{array} \)
Number of days \( =365 \times 0.5636=205.7 \)
So, 205 (days)

Knowledge points:

5.5.1 understand the use of a normal distribution to model a continuous random variable, and use normal distribution tables (Sketches of normal curves to illustrate distributions or probabilities may be required.)
5.5.2.1 finding the value of $P\left(X>x_{1}\right)$, or a related probability, given the values of $x_{1}, \mu, \sigma$.

Solution:

Download APP for more features
1. Tons of answers.
2. Smarter Al tools enhance your learning journey.
IOS
Download
Android
Download
Google Play
Download