The weights of apples of a certain variety are normally distributed with mean 82 grams. $$\(22 \%\)$$ of these apples have a weight greater than 87 grams. Find the standard deviation of the weights of these apples. ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................ ........................................................................................................................................................

Mathematics
IGCSE&ALevel
CAIE
Exam No:9709_m20_qp_52 Year:2020 Question No:3(a)

Answer:


\(\mathrm{P}(X>87)=\mathrm{P}\left(Z>\frac{87-82}{\sigma}\right)=0.22\)

\(\mathrm{P}\left(Z<\frac{5}{\sigma}\right)=0.78\)
\(\left(\frac{5}{\sigma}=\right) 0.772\)
\(\sigma=6.48\)

Knowledge points:

5.5.1 understand the use of a normal distribution to model a continuous random variable, and use normal distribution tables (Sketches of normal curves to illustrate distributions or probabilities may be required.)
5.5.2.2 finding a relationship between $x_{1}, \mu$ and $\sigma $ given the value of $P\left(X>x_{1}\right)$ or a related probability (For calculations involving standardisation, full details of the working should be shown.) (e.g. $Z=\frac{(X-\mu)}{\sigma}$)

Solution:

Download APP for more features
1. Tons of answers.
2. Smarter Al tools enhance your learning journey.
IOS
Download
Android
Download
Google Play
Download