A skittle is a wooden object that can stand upright on one end. In a game of Skittles, a ball is thrown at some skittles to knock them over, as shown. (Source: © CMBiles/Getty Images) The diagram below shows the ball just before it collides with a skittle. The graph shows how the velocity of the skittle varies with time. The time shown on the graph starts just before the ball hits the skittle. Determine the average acceleration of the skittle during the collision. (3) .............................................................................................................................................................................................................................................. .............................................................................................................................................................................................................................................. .............................................................................................................................................................................................................................................. .............................................................................................................................................................................................................................................. .............................................................................................................................................................................................................................................. Average acceleration $$\(=\)$$ ...................................................
Exam No:wph11-01-que-20240112 Year:2024 Question No:16(a)
Answer:
A value of \(v\) and corresponding value of \(t\) read from graph
Use of \(a=\frac{\Delta v}{\Delta t}\) using values of \(t\) between 14 ms and 50 ms or using a value of \(\Delta t \leq 36 \mathrm{~ms}\).
Average acceleration \(=86 \mathrm{~m} \mathrm{~s}^{-2}\)
Example of calculation
\[
a=\frac{2.85 \mathrm{~m} \mathrm{~s}^{-1}}{48 \times 10^{-3} \mathrm{~s}-15 \times 10^{-3} \mathrm{~s}}=86.3 \mathrm{~m} \mathrm{~s}^{-2}
\]
Use of \(a=\frac{\Delta v}{\Delta t}\) using values of \(t\) between 14 ms and 50 ms or using a value of \(\Delta t \leq 36 \mathrm{~ms}\).
Average acceleration \(=86 \mathrm{~m} \mathrm{~s}^{-2}\)
Example of calculation
\[
a=\frac{2.85 \mathrm{~m} \mathrm{~s}^{-1}}{48 \times 10^{-3} \mathrm{~s}-15 \times 10^{-3} \mathrm{~s}}=86.3 \mathrm{~m} \mathrm{~s}^{-2}
\]
Knowledge points:
CH1 - Mechanics
Solution:
Download APP for more features
1. Tons of answers.
2. Smarter Al tools enhance your learning journey.
IOS
Download
Download
Android
Download
Download
Google Play
Download
Download