Evaluate the indefinite integral $$\(\int \frac{\cos \left(x^{3}\right)-1}{x} d x\)$$ as an infinite series.
A.
\(\sum_{n=0}^{\infty} \frac{(-1)^{n}}{3 n \cdot n!} x^{3 n}+c\)
B.
\(\sum_{n=1}^{\infty} \frac{1}{6(n-1)(2 n)!} x^{6 n-1}+c\)
C.
\(\sum_{n=0}^{\infty} \frac{1}{6 n(2 n)!} x^{6 n}+c\)
D.
\(\sum_{n=1}^{\infty} \frac{(-1)^{n}}{6 n(2 n)!} x^{6 n}+c\)
Exam No:AP Calculus Unit 10 Questions Set 2 Year:2024 Question No:43
Answer:
D
Knowledge points:
10.14 Finding Taylor or Maclaurin Series for a Function
10.15 Representing Functions as Power Series
Solution:
Download APP for more features
1. Tons of answers.
2. Smarter Al tools enhance your learning journey.
IOS
Download
Download
Android
Download
Download
Google Play
Download
Download