The third-degree Taylor polynomial $$\(P_{3}(x)\)$$ for $$\(\sin x\)$$ about $$\(\frac{\pi}{4}\)$$ is

A.
\(\frac{1}{\sqrt{2}}\left(\left(x-\frac{\pi}{4}\right)-\frac{1}{3!}\left(x-\frac{\pi}{4}\right)^{3}\right)\)
B.
\(\frac{1}{\sqrt{2}}\left(1+\left(x-\frac{\pi}{4}\right)-\frac{1}{2}\left(x-\frac{\pi}{4}\right)^{2}+\frac{1}{3!}\left(x-\frac{\pi}{4}\right)^{3}\right)\)
C.
\(\frac{1}{\sqrt{2}}\left(1+\left(x-\frac{\pi}{4}\right)-\frac{1}{2!}\left(x-\frac{\pi}{4}\right)^{2}-\frac{1}{3!}\left(x-\frac{\pi}{4}\right)^{3}\right)\)
D.
\(1+\left(x-\frac{\pi}{4}\right)-\frac{1}{2}\left(x-\frac{\pi}{4}\right)^{2}-\frac{1}{6}\left(x-\frac{\pi}{4}\right)^{3}\)
Calculus
AP
College Board
Exam No:AP Calculus Unit 10 Questions Set Year:2024 Question No:37

Answer:

C

Knowledge points:

10.11 Finding Taylor Polynomial Approximations of Functions
10.14 Finding Taylor or Maclaurin Series for a Function

Solution:

Download APP for more features
1. Tons of answers.
2. Smarter Al tools enhance your learning journey.
IOS
Download
Android
Download
Google Play
Download