An object is formed by removing a cylinder of radius $$\(\frac{2}{3} a\)$$ and height $$\(k h(k< 1)\)$$ from a uniform solid cylinder of radius $$\(a\)$$ and height $$\(h\)$$. The vertical axes of symmetry of the two cylinders coincide. The upper faces of the two cylinders are in the same plane as each other. The points $$\(A\)$$ and $$\(B\)$$ are the opposite ends of a diameter of the upper face of the object (see diagram). Find, in terms of $$\(h\)$$ and $$\(k\)$$, the distance of the centre of mass of the object from $$\(A B\)$$. ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . When the object is suspended from $$\(A\)$$, the angle between $$\(A B\)$$ and the vertical is $$\(\theta\)$$, where $$\(\tan \theta=\frac{3}{2}\)$$.

Further Mathematics
IGCSE&ALevel
CAIE
Exam No:9231_w24_qp_33 Year:2024 Question No:4(a)

Answer:



Knowledge points:

3.2.4.1 Simple cases only, e.g. a uniform L-shaped lamina, or a uniform cone joined at its base to a uniform hemisphere of the same radius.
3.2.5 use the principle that if a rigid body is in equilibrium under the action of coplanar forces then the

Solution:

Download APP for more features
1. Tons of answers.
2. Smarter Al tools enhance your learning journey.
IOS
Download
Android
Download
Google Play
Download