A function f with domain $$\(x> 0\)$$ is such that $$\(\mathrm{f}^{\prime}(x)=8(2 x-3)^{\frac{1}{3}}-10 x^{\frac{2}{3}}\)$$. It is given that the curve with equation $$\(y=\mathrm{f}(x)\)$$ passes through the point $$\((1,0)\)$$. Find the equation of the normal to the curve at the point $$\((1,0)\)$$. ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ .
Exam No:9709_w24_qp_12 Year:2024 Question No:10(a)
Answer:

Knowledge points:
1.7.3 apply differentiation to gradients, tangents and normals, increasing and decreasing functions and rates of change (Including connected rates of change, e.g. given the rate of increase of the radius of a circle, find the rate of increase of the area for a specific value of one of the variables.)
Solution:
Download APP for more features
1. Tons of answers.
2. Smarter Al tools enhance your learning journey.
IOS
Download
Download
Android
Download
Download
Google Play
Download
Download