Find the area of the region bounded by the curve and the lines $$\(x=0, x=\frac{7}{2}\)$$ and $$\(y=0\)$$. ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ .
Exam No:9709_w24_qp_11 Year:2024 Question No:7(b)
Answer:

Knowledge points:
1.8.4.1 the area of a region bounded by a curve and lines parallel to the axes, or between a curve and a line or between two curves
1.8.4.2 a volume of revolution about one of the axes. (A volume of revolution may involve a region not bounded by the axis of rotation, e.g. the region between and y = 5 rotated about the x-axis.)
Solution:
Download APP for more features
1. Tons of answers.
2. Smarter Al tools enhance your learning journey.
IOS
Download
Download
Android
Download
Download
Google Play
Download
Download