In the expansion of $$\(\left(k x+\frac{2}{x}\right)^{4}\)$$, where $$\(k\)$$ is a positive constant, the term independent of $$\(x\)$$ is equal to 150 . Find the value of $$\(k\)$$ and hence determine the coefficient of $$\(x^{2}\)$$ in the expansion. ................................................................................................................................................................ . ................................................................................................................................................................ . ................................................................................................................................................................ . ................................................................................................................................................................ . ................................................................................................................................................................ . ................................................................................................................................................................ . ................................................................................................................................................................ . ................................................................................................................................................................ . ................................................................................................................................................................ . ................................................................................................................................................................ . ................................................................................................................................................................ . ................................................................................................................................................................ . ................................................................................................................................................................ . ................................................................................................................................................................ . ................................................................................................................................................................ . ................................................................................................................................................................ . ................................................................................................................................................................ . ................................................................................................................................................................ . ................................................................................................................................................................ . ................................................................................................................................................................ . ................................................................................................................................................................ . ................................................................................................................................................................ . ................................................................................................................................................................ . ................................................................................................................................................................ . ................................................................................................................................................................ . ................................................................................................................................................................ .
Exam No:9709_w24_qp_11 Year:2024 Question No:1
Answer:

Knowledge points:
1.6.1 use the expansion of , where is a positive integer (Including the notations and n!) (Knowledge of the greatest term and properties of the coefficients are not required.)
Solution:
Download APP for more features
1. Tons of answers.
2. Smarter Al tools enhance your learning journey.
IOS
Download
Download
Android
Download
Download
Google Play
Download
Download