Points $$\(A\)$$ and $$\(B\)$$ have coordinates $$\((4,3)\)$$ and $$\((8,-5)\)$$ respectively. A circle with radius 10 passes through the points $$\(A\)$$ and $$\(B\)$$. Show that the centre of the circle lies on the line $$\(y=\frac{1}{2} x-4\)$$. ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ .
Exam No:9709_w24_qp_13 Year:2024 Question No:10(a)
Answer:

Knowledge points:
1.7.1 understand the gradient of a curve at a point as the limit of the gradients of a suitable sequence of chords, and use the notations for first and second derivatives (Only an informal understanding of the idea of a limit is expected.)
1.7.2 use the derivative of (for any rational ), together with constant multiples, sums and differences of functions, and of composite functions using the chain rule
Solution:
Download APP for more features
1. Tons of answers.
2. Smarter Al tools enhance your learning journey.
IOS
Download
Download
Android
Download
Download
Google Play
Download
Download