The diagram shows the curve with equation $$\(y=a \sin (b x)+c\)$$ for $$\(0 \leqslant x \leqslant 2 \pi\)$$, where $$\(a, b\)$$ and $$\(c\)$$ are positive constants. State the values of $$\(a, b\)$$ and $$\(c\)$$. ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ . ........................................................................................................................................................ .
Exam No:9709_w24_qp_12 Year:2024 Question No:1(a)
Answer:

Knowledge points:
1.5.1 sketch and use graphs of the sine, cosine and tangent functions (for angles of any size, and using either degrees or radians)
1.5.5 find all the solutions of simple trigonometrical equations lying in a specified interval (general forms of solution are not included).
Solution:
Download APP for more features
1. Tons of answers.
2. Smarter Al tools enhance your learning journey.
IOS
Download
Download
Android
Download
Download
Google Play
Download
Download