The function f is defined by $$\(\mathrm{f}(x)=\frac{2 x+1}{2 x-1}\)$$ for $$\(x< \frac{1}{2}\)$$ . (a)(i)State the value of $$\(f(-1)\)$$ . [1] ................................................................................................................................................ . ................................................................................................................................................ . ................................................................................................................................................ . ................................................................................................................................................ . (ii) The diagram shows the graph of $$\(y=\mathrm{f}(x)\)$$ .Sketch the graph of $$\(y=\mathrm{f}^{-1}(x)\)$$ on this diagram. Show any relevant mirror line. [2] (iii)Find an expression for $$\(\mathrm{f}^{-1}(x)\)$$ and state the domain of the function $$\(\mathrm{f}^{-1}\)$$ . [4] ................................................................................................................................................ . ................................................................................................................................................ . ................................................................................................................................................ . ................................................................................................................................................ . ................................................................................................................................................ . ................................................................................................................................................ . ................................................................................................................................................ . ................................................................................................................................................ . ................................................................................................................................................ . ................................................................................................................................................ . ................................................................................................................................................ . ................................................................................................................................................ . ................................................................................................................................................ . ................................................................................................................................................ . ................................................................................................................................................ . ................................................................................................................................................ . ................................................................................................................................................ . ................................................................................................................................................ . The function g is defined by $$\(\mathrm{g}(x)=3 x+2\)$$ for $$\(x \in \mathbb{R}\)$$.
Exam No:9709_w24_qp_12 Year:2024 Question No:5(a)
Answer:


Knowledge points:
1.2.1 understand the terms function, domain, range, one-one function, inverse function and composition of functions
1.2.2 identify the range of a given function in simple cases, and find the composition of two given functions
1.2.3 determine whether or not a given function is one-one, and find the inverse of a one-one function in simple cases
1.2.4 illustrate in graphical terms the relation between a one-one function and its inverse (Sketches should include an indication of the mirror line .)
1.2.5 understand and use the transformations of the graph of and simple combinations of these. (Including use of the terms ‘translation’, ‘reflection’ and ‘stretch’ in describing transformations. Questions may involve algebraic or trigonometric functions, or other graphs with given features.)
Solution:
Download APP for more features
1. Tons of answers.
2. Smarter Al tools enhance your learning journey.
IOS
Download
Download
Android
Download
Download
Google Play
Download
Download